سفارش تبلیغ
صبا ویژن
می دانم که برترین توشه رهرو به سوی تو، اراده استواری است که با آن تو را برمی گزیند و اینک، قلبم با اراده ای استوار با تو رازگویی می کند. [امام کاظم علیه السلام ـ در دعایش زمانی که او را به سوی بغداد می بردند ـ]
Elmi
 RSS 
خانه
ایمیل
شناسنامه
مدیریت وبلاگ
کل بازدید : 5373
بازدید امروز : 0
بازدید دیروز : 2
........... درباره خودم ...........
Elmi
hoseinzadeh

........... لوگوی خودم ...........
Elmi
............. بایگانی.............
نازی

............. اشتراک.............
 
............آوای آشنا............

........... طراح قالب...........


  • فناوری نانو

  • نویسنده : hoseinzadeh:: 86/12/3:: 8:50 عصر

    فناوری نانو چیست؟

    از اهداف مهم فناوری نانو ــ و شاید مهم‌ترین آنها ــ به وجود آوردن ساختارهایی از مواد است که در آنها آرایش مولکول‌ها از پیش طراحی شده باشد. روش‌های مرسوم تولید، مثل روش ذوب فلزات و سرد کردن آنها در قالب، چنین امکانی را فراهم نمی‌کنند. پس چگونه می‌توان چنین ساختارهایی را به وجود آورد؟ این مقاله می‌خواهد به همین سؤال پاسخ بگوید.

    فرض کنید تعدادی آجر خانه‌سازی دارید و می‌خواهید با آن چیزی ــ بهتر است بگوییم «ساختاری» ــ مانند شکل 1 بسازید.

     

     



    چگونه این کار را انجام می‌دهید؟ احتمالاً روش شما هم با ما یکی است: چهار آجر دو در دو را کنار هم می‌گذارید و بعد چهار آجر دو در دوی دیگر را به صورت عمودی به آنها متصل می‌کنیدتا ساختار مورد نظر شکل بگیرد.

    بسیار خوب، حالا فرض کنید که وقتی آجرهای خانه‌سازی را از فروشگاه می‌خرید، آنها به شکل یک مکعب بزرگِ پیش‌ساخته مثل شکل دو باشند.

     

     



    حالا اگر بخواهیم به شکل یک برسیم چه کنیم؟ اجازه دهید جواب را ما به روش خودمان بدهیم: آجرهای اضافیِ مکعب بزرگ را حذف کنید تا شکل یک کم‌کم خودش را نشان بدهد. (مثل شکل 3)

     

     



    در روش اول با استفاده از قطعات کوچک یک قطعة بزرگتر ساختیم. به این روش، «ساختن از پایین به بالا» می‌گوییم. در روش دوم قطعات زائدِ یک قطعة بزرگ را حذف کردیم تا به ساختار مورد نظر برسیم. به این روش، «ساختن از بالا به پایین» می‌گوییم.

    حالا فرض کنید یک ساختار جدید برای ساختن پیشنهاد شود، مثل شکل 4.

     

     



    سؤال: از کدام روش برای ساختن این ساختار استفاده کنیم؟ نظر شما چیست؟

    اوضاع کمی پیچیده شد، اما غم به خود راه ندهید! این مقاله برای ساده کردن همین پیچدگی نوشته شده است. یکی از عوامل تعیین‌کنندة جواب، این است که ماده‌ی اولیه‌ی ما به چه شکل است؟ اگر مادة دمِ دست ما تعدادی قطعه‌ی کوچک و ریز باشد، از روش پایین به بالا استفاده می‌کنیم؛ اگر مادة اولیه یک قطعه‌ی بزرگ باشد، از روش بالا به پایین استفاده می‌کنیم. در عین حال، ممکن است هر دو روش هم به کار رود. مثلاً اگر ماده‌ی اولیه برای ساختن شکل پنج به صورت مکعب بزرگی با آجرهای دو در چهار، یعنی همان شکل دو باشد، نمی‌توان با حذف بعضی آجرها مستقیماً به ساختار نهایی رسید. در این حالت، می‌توانیم آجرهای بالا و پایین ساختار شکل چهار را برداریم (ساختن از بالا به پایین) و بعد دو آجر دودردوی مورد نیاز را به جای آنها متصل کنیم. ( ساختن از پایین به بالا)

     

     



    در صنعت هم از هر دو روش با هم استفاده می‌شود. به مثال‌های زیر توجه کنید:

    o
    یک نجار می‌خواهد مجسمه‌ای چوبی بسازد. او یک قطعه‌ی بزرگ چوب را برمی‌دارد و با رنده و سوهان آن را می‌تراشد و پرداخت می‌کند تا مجسمه ساخته شود. این کدام روش است؟

    o
    نجار می‌خواهد یک صندلی بسازد. او پایه‌های میز و قطعات مربوط به تکیه‌گاه صندلی را جداگانه می‌سازد و بعد آنها را به هم متصل می‌کند. این کدام روش است؟

    حالا به نانوفناوری فکر کنید: به نظر شما کدام روش ساختن در نانوفناوری کاربرد دارد؟

    تا چند سال پیش، راه دست‌کاری و جابه‌جا کردن تک‌مولکول‌ها و ساختارهای نانویی یک‌طرفه بود. یعنی برای ساختن چیزها در مقیاس کوچک، می‌بایست یک قطعه‌ی بزرگ‌تر را با تراشیدن و خرد کردن یا حل کردن بخش‌های اضافی با اسید و آن‌قدر کوچک می‌کردیم تا به قطعه‌ی نهایی برسیم. به عیارت دیگر، روش‌ تولید ساختارهای کوچک، از نوع بالا به پایین بود.

    در چند سال اخیر فنونی ابداع شده‌اند که اجازه می‌دهند مولکول‌ها یا ذرات نانویی را جابه‌جا و آنها را به هم متصل کنیم. مثل جابه‌جا کردن ذرات نانویی با میکروسکوپ نیروی اتمی (AFM) یا فنون ساختن نانولوله‌های کربنی. این فوت و فن‌ها در مجموع روش ساختن از پایین به بالا هستند.

    فنون گفته‌شده در بالا، برای ساختن محصولاتی که بسیار کوچک‌اند مناسب به نظر می‌رسند، اما اگر بخواهیم یک دیوار چندسانتی‌متریِ یکدست را به این روش بسازیم، چند ده سال طول می‌کشد تا مولکول‌ها را تک‌تک کنار هم بچینیم و دیوار مورد نظر را بسازیم. در عین حال، اگر بخواهیم دیوار را با استفاده از مواد موجود، مانند فلزات و سنگ‌های ساختمانی، بسازییم، دیوار یکدست و منظم نخواهد بود. (مقاله‌ی نانوفناوری چیست؟، ساختار مواد و عیوب کریستالی را ببینید.) پس چه کار کنیم؟

    پیدا کردن فنون تولید مناسب در نانوفناوری موضوعی است که در چند سال اخیر به‌شدت مورد توجه محققان و دانشمندان بوده است. در واقع، در نانوفناوری هم از روش‌ ساختن از بالا به پایین استفاده می‌شود (به کمک فنونی مانند لیتوگرافی و آسیاب کردن ذرات) و هم از روش ساختن از پایین به بالا (به کمک فنونی مانند خودآرایی یا رسوب‌دهی بخار). منتظر مقاله‌های بعدی باشگاه نانو در این موضوع باشید.

    منبع : www.nanoclub.ir


    نظرات شما ()

  • فیزیک هسته ای

  • نویسنده : hoseinzadeh:: 86/11/18:: 4:37 عصر
    استفاده اصلی از انرژی هسته‌ای، تولید انرژی الکتریسته است. این راهی ساده و کارآمد برای جوشاندن آب و ایجاد بخار برای راه‌اندازی توربین‌های مولد است. بدون راکتورهای موجود در نیروگاه‌های هسته‌ای، این نیروگاه‌ها شبیه دیگر نیروگاه‌ها زغال‌سنگی و سوختی می‌شود. انرژی هسته‌ای بهترین کاربرد برای تولید مقیاس متوسط یا بزرگی از انرژی الکتریکی به‌طور مداوم است. سوخت اینگونه ایستگاه‌ها را اوانیوم تشکیل می‌دهد.
    چرخه سوخت هسته‌ای تعدادی عملیات صنعتی است که تولید الکتریسته را با اورانیوم در راکتورهای هسته‌ای ممکن می‌کند.

    اورانیوم عنصری نسبتاً معمولی و عادی است که در تمام دنیا یافت می‌شود. این عنصر به‌صورت معدنی در بعضی از کشورها وجود دارد که حتماً باید قبل از مصرف به صورت سوخت در راکتورهای هسته‌ای، فرآوری شود.
    الکتریسته با استفاده از گرمای تولید شده در راکتورهای هسته‌ای و با ایجاد بخار برای به‌کار انداختن توربین‌هایی که به مولد متصل‌اند تولید می‌شود.

    سوختی که از راکتور خارج شده، بعداز این که به پایان عمر مفید خود رسید می‌تواند به عنوان سوختی جدید استفاده شود.

    فعالیت‌های مختلفی که با تولید الکتریسیته از واکنش‌های هسته‌ای همراهند مرتبط به چرخه‌ سوخت هسته‌ای هستند. چرخه سوختی انرژی هسته‌ای با اورانیوم آغاز می‌شود و با انهدام پسمانده‌های هسته‌ای پایان می‌یابد. دوبار عمل‌آوری سوخت‌های خرج شده به مرحله‌های چرخه سوخت هسته‌ای شکلی صحیح می‌دهد.

    اورانیوم
    اورانیوم فلزی رادیواکتیو و پرتوزاست که در سراسر پوسته سخت زمین موجود است. این فلز حدوداً 500 بار از طلا فراوان‌تر و به اندازه قوطی حلبی معمولی و عادی است. اورانیوم اکنون به اندازه‌ای در صخره‌ها و خاک و زمین وجود دارد که در آب رودخانه‌ها، دریاها و اقیانوس‌ها موجود است. برای مثال این فلز با غلظتی در حدود 4 قسمت در هر میلیون (ppm4) در گرانیت وجود دارد که 60 درصد از کره زمین را شامل می‌شود، در کودها با غلظتی بالغ بر ppm400 و در ته‌مانده زغال‌سنگ با غلظتی بیش از ppm100 موجود است. اکثر رادیو اکتیویته مربوط به اورانیوم در طبیعت در حقیقت ناشی از معدن‌های دیگری است که با عملیات رادیواکتیو به وجود آمده‌اند و در هنگام استخراج از معدن و آسیاب کردن به جا مانده‌اند.
    چند منطقه در سراسر دنیا وجود دارد که غلظت اورانیوم موجود در آنها به قدر کافی است که استخراج آن برای استفاده از نظر اقتصادی به صرفه و امکان‌پذیر است. این نوع مواد غلیظ، سنگ معدن یا کانه نامیده می‌شوند.
    - چرخه سوخت هسته‌ای (شکل هندسی) (عکس)

    استخراج اورانیوم
    هر دو نوع حفاری و تکنیک‌های موقعیتی برای کشف کردن اورانیوم به کار می‌روند، حفاری ممکن است به صورت زیرزمینی یا چال‌های باز و روی زمین انجام شود.

    در کل، حفاری‌های روزمینی در جاهایی استفاده می‌شود که ذخیره معدنی نزدیک به سطح زمین و حفاری‌های زیرزمینی برای ذخیره‌های معدنی عمیق‌تر به کار می‌رود. به‌طور نمونه برای حفاری روزمینی بیشتر از 120 متر عمق، نیاز به گودال‌های بزرگی بر سطح زمین است؛ اندازه گودال‌ها باید بزرگتر از اندازه ذخیره معدنی باشد تا زمانی که دیواره‌های گودال محکم شوند تا مانع ریزش آنها شود. در نتیجه، تعداد موادی که باید به بیرون از معدن انتقال داده شود تا به کانه دسترسی پیدا کند زیاد است.

    حفاری‌های زیرزمینی دارای خرابی و اخلال‌های کمتری در سطح زمین هستند و تعداد موادی که باید برای دسترسی به سنگ معدن یا کانه به بیرون از معدن انتقال داده شوند به‌طور قابل ملاحظه‌ای کمتر از حفاری نوع روزمینی است.

    مقدار زیادی از اورانیوم جهانی از (ISL) (In Sitaleding) می‌آید. جایی که آب‌های اکسیژنه زیرزمینی در معدن‌های کانه‌ای پرمنفذ به گردش می‌افتند تا اورانیوم موجود در معدن را در خود حل کنند و آن را به سطح زمین آورند. (ISL) شاید با اسید رقیق یا با محلول‌های قلیایی همراه باشد تا اورانیوم را محلول نگهدارد، سپس اورانیوم در کارخانه‌های آسیاب‌سازی اورانیوم، از محلول خود جدا می‌شود.
    در نتیجه انتخاب روش حفاری برای ته‌نشین کردن اورانیوم بستگی به جنس دیواره معدن کانه سنگ، امنیت و ملاحظات اقتصادی دارد.
    در غالب معدن‌های زیرزمینی اورانیوم، پیشگیری‌های مخصوصی که شامل افزایش تهویه هوا می‌شود، لازم است تا از پرتوافشانی جلوگیری شود.

    آسیاب کردن اورانیوم
    محل آسیاب کردن معمولاً به معدن استخراج اورانیوم نزدیک است. بیشتر امکانات استخراجی شامل یک آسیاب می‌شود. هرچه جایی که معدن‌ها قرار دارند به هم نزدیک‌تر باشند یک آسیاب می‌تواند عمل آسیاب‌سازی چند معدن را انجام دهد. عمل آسیاب‌سازی اکسید اورانیوم غلیظی تولید می‌کند که از آسیاب حمل می‌شود. گاهی اوقات به این اکسیدها کیک زرد می‌گویند که شامل 80 درصد اورانیوم می‌باشد. سنگ معدن اصل شاید دارای چیزی در حدود 1/0 درصد اورانیوم باشد.
    در یک آسیاب، اورانیوم با عمل سنگ‌شویی از سنگ‌های معدنی خرد شده جدا می‌شود که یا با اسید قوی و یا با محلول قلیایی قوی حل می‌شود و به صورت محلول در می‌آید. سپس اورانیوم با ته‌نشین کردن از محلول جدا می‌شود و بعداز خشک کردن و معمولاً حرارت دادن به صورت اشباع شده و غلیظ در استوانه‌های 200 لیتری بسته‌بندی می‌شود.
    باقیمانده سنگ معدن که بیشتر شامل مواد پرتوزا و سنگ معدن می‌شود در محلی معین به دور از محیط معدن در امکانات مهندسی نگهداری می‌شود. (معمولاً در گودال‌هایی روی زمین).
    پس‌مانده‌های دارای مواد رادیواکتیو عمری طولانی دارند و غلظت آنها کم خاصیتی سمی دارند. هرچند مقدار کلی عناصر پرتوزا کمتر از سنگ معدن اصلی است و نیمه عمر آنها کوتاه خواهد بود اما این مواد باید از محیط زیست دور بمانند.

    تبدیل و تغییر
    محلول آسیاب شده اورانیوم مستقیماً قابل استفاده به‌عنوان سوخت در راکتورهای هسته‌ای نیست. پردازش اضافی به غنی‌سازی اورانیوم مربوط است که برای تمام راکتورها لازم است.
    این عمل اورانیوم را به نوع گازی تبدیل می‌کند و راه به‌دست آوردن آن تبدیل کردن به هگزا فلورید (Hexa Fluoride) است که در دمای نسبتاً پایین گاز است.
    در وسیله‌ای تبدیل‌گر، اورانیوم به اورانیوم دی‌اکسید تبدیل می‌شود که در راکتورهایی که نیاز به اورانیوم غنی شده ندارند استفاده می‌شود.
    بیشتر آنها بعداز آن که به هگزافلورید تبدیل شدند برای غنی‌سازی در کارخانه آماده هستند و در کانتینرهایی که از جنس فلز مقاوم و محکم است حمل می‌شوند. خطر اصلی این طبقه از چرخه سوختی اثر هیدروژن فلورید (Hydrogen Fluoride) است.


    نظرات شما ()

    <      1   2      

  • لیست کل یادداشت های این وبلاگ